Necroptosis, a novel form of caspase-independent cell death, contributes to renal epithelial cell damage in an ATP-depleted renal ischemia model.

نویسندگان

  • Xinling Liang
  • Yuanhan Chen
  • Li Zhang
  • Fen Jiang
  • Wenjian Wang
  • Zhiming Ye
  • Shuangxin Liu
  • Chunping Yu
  • Wei Shi
چکیده

Acute kidney injury (AKI) induced by renal ischemia is a common clinical problem associated with a high morbidity and mortality. The present study investigated whether necroptosis was present in an in vitro renal ischemia model and whether the addition of necrostatin-1 (Nec-1) has a protective effect. In addition, whether autophagy was inhibited following the use of Nec-1 was also examined. When apoptosis was inhibited by z-VAD‑fmk and energy was depleted with antimycin A for 1 h, the morphological abnormalities of human proximal tubular epithelial (HK-2) cells were markedly attenuated, and the cell viability was significantly improved following incubation with Nec-1. LC3-II/I ratios and LC3-II/GAPDH ratios demonstrated a statistically significant decrease in the Nec-1 + tumor necrosis factor (TNF)-α + z-VAD-fmk + antimycin A (1 h) group compared with the control group. In conclusion, the present study suggested that necroptosis was present in HK-2 cells subjected to TNF-α stimulation and energy depletion. Nec-1 inhibits a caspase‑independent necroptotic pathway involving autophagy and may have therapeutic potential to prevent and treat renal ischemic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats

Tubulointerstitial fibrosis (TIF) is caused by the progressive loss of renal tubular cells and the consequent replacement of the extracellular matrix. The progressive depletion of renal tubular cells results from apoptosis and necroptosis; however, the relative significance of each of these cell death mechanisms at different stages during the progression of chronic kidney disease (CKD) remains ...

متن کامل

Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line

Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions                        in vitro. MTT assay was used to measure the cell proliferation...

متن کامل

ATP-dependent potassium channels are implicated in simvastatin pretreatment-induced inhibition of apoptotic cell death after renal ischemia/reperfusion injury

  Background: Simvastatin is a widely used medication in cardiac care. Here we evaluate the role of ATP sensitive potassium (KATP) channels in simvastatin induced renal protection after renal ischemia/reperfusion (I/R) injury.    Methods: A total of 81 male Wistar rats, were treated with simvastatin (10 and 20mg/kg/day gavage, one week). Some groups received glibenclami...

متن کامل

The Mechanism of Preventive Effect of Captopril on Renal Ischemia Reperfusion Injury is Independent of ATP Dependent Potassium Channels

Background: Renal ischemia reperfusion (IR) injury has been a major source of concern during the past decades and angiotensin converting enzyme (ACE) inhibitors have been successfully used to prevent this injury. There have been some controversial reports about the involvement of KATP channels in the mechanism of action of ACE inhibitors. In this study, we examined the effect of KATP channel bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular medicine reports

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2014